

US006309901B1

(12) United States Patent

Tahon et al.

(10) Patent No.: US 6,309,901 B1

(45) **Date of Patent:** *Oct. 30, 2001

(54) USE OF GLASS LAMINATE AS A SUBSTRATE IN SEMICONDUCTOR DEVICES

(75) Inventors: **Jean-Pierre Tahon**, Langdorp; **Bartholomeus Verlinden**, Tongeren; **Rudi Goedeweeck**, Rotselaar, all of

(BE)

(73) Assignee: Agfa-Gevaert, Mortsel (BE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 09/529,658

(22) PCT Filed: Oct. 7, 1998

(86) PCT No.: PCT/EP98/06455

§ 371 Date: Apr. 18, 2000

§ 102(e) Date: Apr. 18, 2000

(87) PCT Pub. No.: WO99/21708

PCT Pub. Date: May 6, 1999

(30) Foreign Application Priority Data

Oct. 24, 1997	(EP)	97203312
Sep. 9, 1998	(WO)	PCT/EP98/05748

(51) **Int. Cl.**⁷ **H01L 21/00**; H01L 21/44; B05D 5/06; B05D 5/12

(52) **U.S. Cl.** **438/29**; 438/25; 438/584; 427/65; 427/108

(56) References Cited

U.S. PATENT DOCUMENTS

5,635,791	*	6/1997	Vickers	313/309
5,686,383	*	11/1997	Long et al	506/227
6,101,846	*	8/2000	Elledge	65/102
6,120,907	*	9/2000	Tahon et al	428/426
6,197,418	*	3/2001	Cloots et al	428/332

^{*} cited by examiner

Primary Examiner—Richard Elms Assistant Examiner—Adam J Pyonin

(74) Attorney, Agent, or Firm—Breiner & Breiner, L.L.C.

(57) ABSTRACT

A method for making a semiconductor device is disclosed which comprises the step of applying a functional layer on a substrate, characterized in that said substrate is a laminate which comprises a support and a glass layer, said glass layer having a thickness of less than 700 μ m. The support is preferably a plastic foil. The laminate has the combined benefits of low weight and high strength and is therefore a suitable substrate for making flat panel displays such as liquid crystal displays, plasma displays, field emission displays or organic light-emitting polymer displays. Preferred examples of the functional layer are e.g. electroconductive layers, liquid crystal orientation layers, color filters, electroluminescent layers, passivation layers and phosphor layers.

15 Claims, No Drawings